

Solidify the European FD-SOI ecosystem and accelerating its industrial deployment

Martin LABRUNE

Europe & French Public Affairs

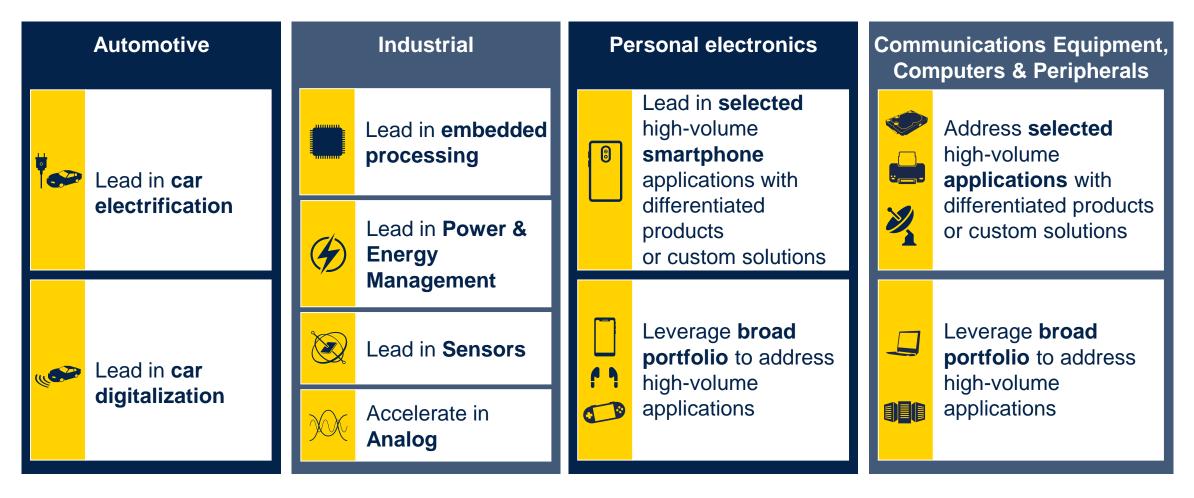
STMicroelectronics

Agenda

1 STMicroelectronics overview

2 FD-SOI and applications

3 SOIL: roots, consortium, & objectives


4 SOIL project: WP structure, demonstrators, & impacts

Who we are

Four end markets

Global presence & technology

Front-End (Wafer fabrication) Back-End (Assembly & Test)

China Shenzhen **Philippines** Calamba

MEMS for sensors & Micro-actuators

CMOS - power DMOS) FD-SOI CMOS Discrete, power MOSFET, IGBT

Analog & RF CMOS

FinFET through foundry

Vertical intelligent power

silicon carbide, gallium nitride

Smart power: BCD (bipolar -

eNVM CMOS

Optical sensing solutions

Packaging technologies Leadframe – Laminate – Sensor module – Wafer level **Sweden** Norrköping

France Crolles

Rousset Tours

Rennes

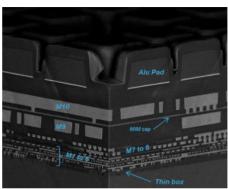
Italy Agrate Catania Marcianise

Morocco Bouskoura

Malta Kirkop

Malaysia Muar

Singapore


FD-SOI

FD-SOI was developed by STMicroelectronics, SOITEC, and CEA. It is a simpler process, compatible with bulk CMOS.

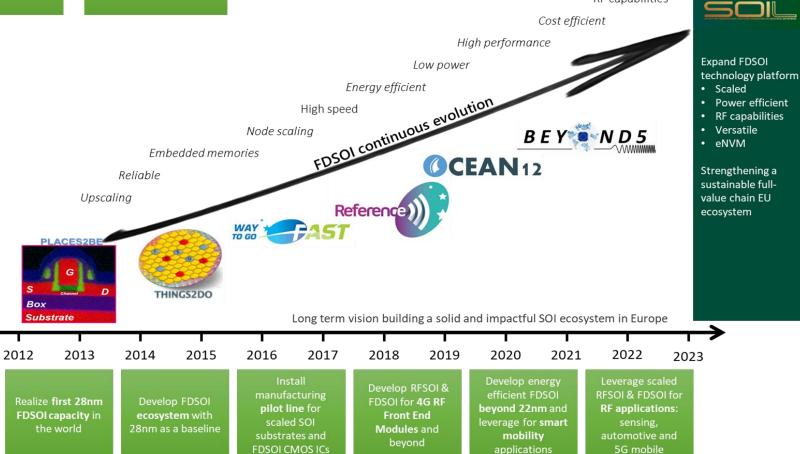
UTBB FD-SOI features:

- Better electrostatic characteristics
 & thin channel controlled by the gate → lower leakage power
- Body biasing tuning performance/leakage trade-off, statically or dynamically

Advantages:

- Intrinsic RF & mm-W performance due to local isolation of devices vs substrate
- Possibility to bias transistor at a low voltage
- Wide operating voltage range for different applications
 - → competitive performance, power, and area advantages

FD-SOI market applications



Embedded memory generations for MCUs leveraging the FDSOI technology evolution Integrate eNVM in BEOL WAKeMe<u>UP</u> Stor**≜**lge ePCM for Al Long term vision building a solid and impactful SOI ecosystem in Europe 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Establish an open ultra-low Setup an embedded Flash Setup an advanced MCU power technology and Develop & mature FDSOI technology pilot line for pilot line for smart mobility memory platform for IoT 28nm & ePCM for Edge AI innovative MCU based on ePCM on top of a applications, leveraging 28nm logic line prototyping

SOIL project : roots

RF capabilities

The SOIL project is rooted in 10+ years of successive European funded project aiming to develop a full FD-SOI ecosystem, from technology and desig platform providers, all the way to system and applications.

SOIL consortium: a European initiative

The SOIL project is funded by the CHIPS JU and the participant states.

It comprises 34 partners in 9 countries

36-month project with a 95.7 M€ budget

SOIL main objectives

1

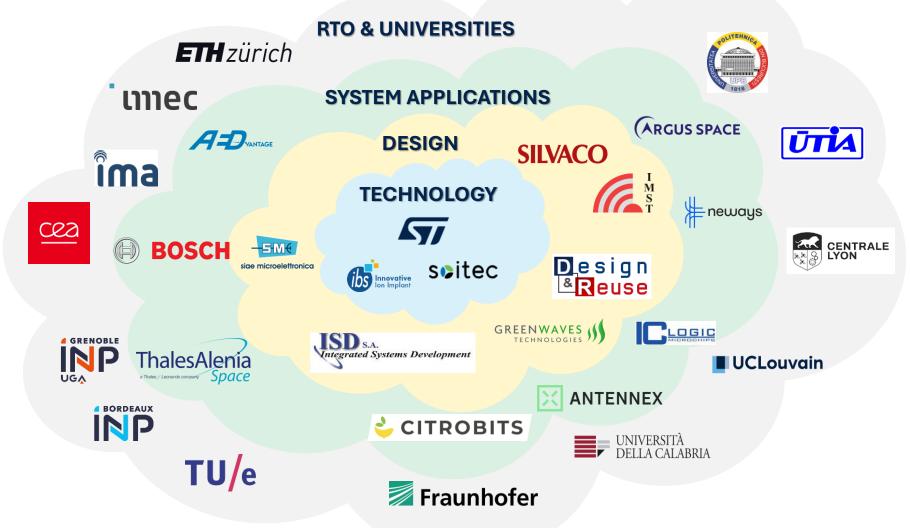
European strategic sovereignty for semiconductor technology based on a resilient European value chain for FD-SOI technology

2

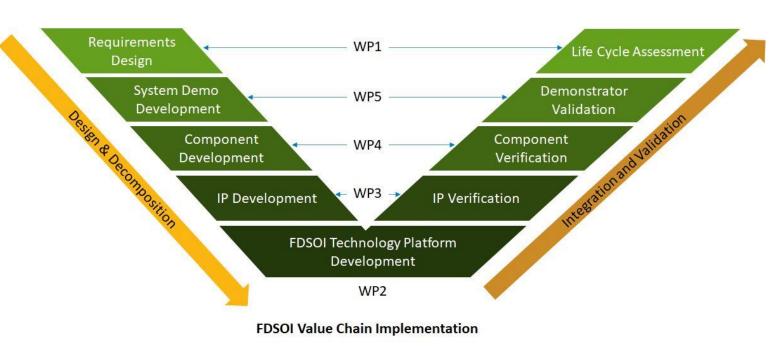
Achieve world-leading energy efficiency for sustainable semiconductor applications and production

3

Establish semiconductor, IP, and components for securing and leveraging European semiconductor leadership



R&D capacity building in key semiconductor technologies


...all along the value chain

12

Work package: tasks along the value chain

WP organization in the development chain System

Component

Material

FD-SOI Substrate enhancement

FD-SOI platform enablement & enhancement

Pathfinding development toward upcoming FD-SOI technology

Characterization

Model and simulation

Data converters

A=DVANTAGE

High-performance RF

Low power communication

Efficient computing

EDA for efficient and productive IP design

FD-SOI components for connectivity &

ARGUS SPACE

Edge Al

FD-SOI components for automotive

FD-SOI components for telecommunications and Space

Microphone array / sensor fusion

ASA-ML high speed wireline link

Automotive millimetre wave sensor

Active noise cancelling

Al-based inference

Rad-hard

Zero-energy communication

DESIGN

DLOGY

seitec

ROBI

Fraunhofer

SOIL demonstrators

Seven demonstrators, addressing three different markets

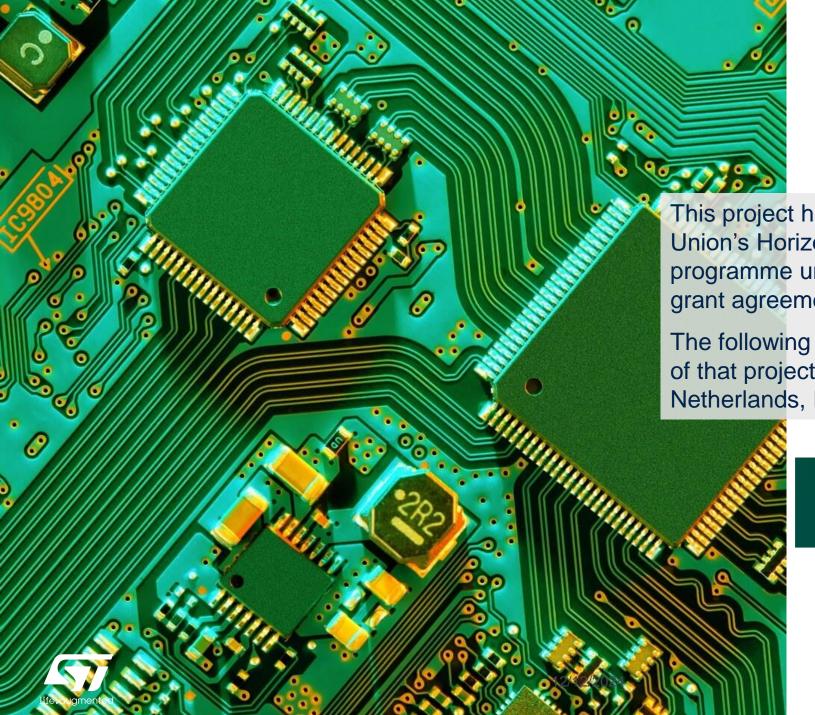
Project impacts

Strengthen the ecosystem around European FD-SOI IC technology

ECSEL/KDT projects. Lab2Fab model.

FD-SOI ecosystem: enlarge existing environment, resulting from

Matching objectives of SRIA Foundation Technology Layers: Process Technology, Equipment, Materials And Manufacturing (eNVM, substrates) & Components, Modules and Systems Integration (sensing, sustainability)


Scientific: collaboration with RTOs, dissemination

Economic/technological: heart of digitalization (ADAS, IoT, etc) 18nm MCU

Environmental sustainability: quantitative evaluation of environmental targets for MCU production and networking equipment in Europe

Expected results in various areas

Acknowledgment

This project has received funding from the European Union's Horizon Europe research and innovation programme under the HORIZON-KDT-JU-2023-1-IA grant agreement No 101139785.

The following states have also contributed to the funding of that project: Belgium, Czechia, France, Italy, Netherlands, Romania, and Switzerland.

The views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CHIPS. Neither the European Union nor the granting authority can be held responsible for them.

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

